Welcome Back MYP Math 9!

	Assignment		nt	Comments
	Effort Grade		rade	(What was interesting or
	(Circle One)		One)	challenging?)
Monday Date: 1/29 Topic:	0	1	2	I rested after FINALS :)
Date: 1/30 Topic:	0	1	2	New Semester!
Wednesday Date: 1/31 Topic: 2B Index L	aws	1	2	
Thursday Date: 2-1 Topic: Applying Ir				
Friday Date: Topic:	0	1	2	

ADVISORY BELL SCHEDULE (w/3 lunches)

Lunch A		
1st Hour	8:05-8:48	43 minutes
2nd Hour	8:53-9:36	43 minutes
Advisory	9:41-10:25	44 minutes
3rd Hour	10:30-11:13	43 minutes
Lunch A	11:18-11:48	30 minutes
4th Hour (Late)	11:53-12:36	43 minutes
5th Hour (Late)	12:41-1:24	43 minutes
6th Hour	1:29-2:12	43 minutes
7th Hour	2:17-3:00	43 minutes

Lunch B		
1st Hour	8:05-8:48	43 minutes
2nd Hour	8:53-9:36	43 minutes
Advisory	9:41-10:25	44 minutes
3rd Hour	10:30-11:13	43 minutes
4th Hour (Early)	11:18-12:01	43 minutes
Lunch B	12:06-12:36	30 minutes
5th Hour (Late)	12:41-1:24	43 minutes
6th Hour	1:29-2:12	43 minutes
7th Hour	2:17-3:00	43 minutes

Lunch C		
1st Hour	8:05-8:48	43 minutes
2nd Hour	8:53-9:36	43 minutes
Advisory	9:41-10:25	44 minutes
3rd Hour	10:30-11:13	43 minutes
4th Hour (Early)	11:18-12:01	43 minutes
5th Hour (Early)	12:06-12:49	43 minutes
Lunch C	12:54-1:24	30 minutes
6th Hour	1:29-2:12	43 minutes
7th Hour	2:17-3:00	43 minutes

Applying Properties of Exponents (Indices)

Warm-up: Classify the following values: Give as many classifications as possible!

$$\left\{-5, 0, \sqrt{3}, \pi, \sqrt{16}, \frac{1}{7}\right\}$$

Applying Properties of Exponents (Indices)

Warm-up: Classify the following values: Give as many classifications as possible!

$$\left\{-5, 0, \sqrt{3}, \pi, \sqrt{16}, \frac{1}{7}\right\}$$

http://images.slideplayer.com/20/5947325/slides/slide_4.jpg

Class Plan:

- 1. Warm-up
- 2. Homework Questions?
- 3. Investigation: Rational Index Laws
- 4. Practice
- 5. 10th grade courses

Today's joke!

I'd like to buy a new boomerang please.
Also, can you tell me how to throw the old one away?

Properties of Rational Exponents

D Chapter 2

RATIONAL INDICES

Rational Numbers

Definition

The **rational numbers** are the numbers that can be written in the form $\frac{n}{d}$, where n and d are integers and d is nonzero and d is nonzero.

Examples

$$\frac{3}{7}$$

$$\frac{-2}{5}$$

$$\frac{-2}{5} \qquad 4 = \frac{4}{1}$$

Investigation: Rational Indices

A **rational** number is a number which can be written in the form $\frac{p}{q}$ where p and q are integers and $q \neq 0$. The integers themselves are rational numbers, since for example $5 = \frac{5}{1}$.

The index laws can be applied not just to integer indices, but to rational indices in general. This helps to give meaning to values such as $3^{\frac{1}{2}}$ and $2^{\frac{1}{3}}$.

Do: Use properties of exponents to complete the rational idex rules

$$\sqrt{a} = \sqrt[2]{a^1} = \underline{}$$

$$\chi$$
 4. Complete the rule: $a^{\frac{1}{n}} = \underline{\qquad}$ and $\sqrt[n]{a} = \underline{\qquad}$

6. Complete the rule:
$$a^{\frac{m}{n}} =$$
 and $\sqrt[n]{a^m} =$

When done: Help others & show teacher

Investigation: Rational Indices

a)
$$5^{\frac{1}{2}} \cdot 5^{\frac{1}{2}} = 5^{\frac{1}{2} + \frac{1}{2}} = 5^{\frac{1}{2} + \frac{1}{2}}$$

_{2. Complete the rule:}
$$\sqrt{a} = \sqrt[2]{a^1} =$$

Investigation Solutions

a)
$$5^{\frac{1}{2}} \cdot 5^{\frac{1}{2}} = 5^{\frac{1}{2} + \frac{1}{2}} = 5^{\frac{3}{2}} = 5$$
b) $(\sqrt{5})^2 = (\sqrt{5})(\sqrt{5}) = 5$
c) $3^{\frac{1}{2}} \cdot 3^{\frac{1}{2}} = 3^{\frac{3}{2}} = 3$
e) $(\sqrt{3})^2 = (\sqrt{3})(\sqrt{3}) = 3$
2. Complete the rule: $\sqrt{a} = \sqrt[2]{a^1} = \sqrt[2]{a}$

Square root =
$$a^2$$

Investigation: Rational Indices

$$\int_{b} \left(16^{\frac{1}{4}} \right)^4 = 16^{\frac{1}{4}} \cdot 16^{\frac{1}{4}} \cdot 16^{\frac{1}{4}} \cdot 16^{\frac{1}{4}} \cdot 16^{\frac{1}{4}} = 16^{\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}} = 16^{\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}} = 16^{\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}} = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{$$

c)
$$\sqrt[3]{27^3} = 2$$
 d) $\sqrt[4]{16^4} = 16$ e) $\sqrt[5]{818^5} = 818$
4. Complete the rule: $a^{\frac{1}{n}} = 2$ and $\sqrt[n]{a} = 2$

Investigation Solutions

3. Complete the following operations:

$$_{a)} \left(27^{\frac{1}{3}} \right)^{3} = 27^{\frac{1}{3}} \cdot 27^{\frac{1}{3}} \cdot 27^{\frac{1}{3}} = 27^{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} = 27^{\frac{3}{3}} = 27^{\frac{3}{3}}$$

$$(16^{\frac{1}{4}})^4 = 16^{\frac{1}{4}} \cdot 16^{\frac{1}{4}} \cdot 16^{\frac{1}{4}} \cdot 16^{\frac{1}{4}} \cdot 16^{\frac{1}{4}} = 16^{\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}} = 16^{\frac{94}{4}} = 16^{\frac{94}{4}} = 16^{\frac{1}{4}} = 16^{\frac{1}{4}}$$

c)
$$\sqrt[3]{27^3} = 27$$
 d) $\sqrt[4]{16^4} = 16$ e) $\sqrt[5]{818^5} = 818$

4. Complete the rule: $a^{\frac{1}{n}} = \sqrt[n]{a^1}$ and $\sqrt[n]{a} = \sqrt[n]{a}$ The "nth" root!

Investigation: Rational Indices

$$^{2}\sqrt{3^{4}} =$$

b)
$$\sqrt[2]{4^3} = \frac{\sqrt{3}}{\sqrt{4^3}} = \frac{\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{4^3}} = \frac{\sqrt{3}}{\sqrt{4^3}} = \frac{\sqrt{3}}{\sqrt{4^3}} = \frac{\sqrt$$

$$_{c)}\sqrt[3]{64^2} = \sqrt{4096} = 16 _{d)}\sqrt[4]{64^2} = 64 = 764$$

$$_{\rm e)}\sqrt[4]{81^3} = 27$$

$$\int_{0}^{5} \sqrt{100000^{2}} = 1000000$$

$$n = root$$

Investigation Solutions

a)
$$\sqrt[2]{3^4} = \sqrt[8]{1 - 9}$$
 b) $\sqrt[2]{4^3} = \sqrt[8]{64} = 8$

b)
$$\sqrt[2]{4^3} = \sqrt{64} = 8$$

$$c) \sqrt[3]{64^2} = \sqrt[3]{4096} = 16$$

$$_{d)}\sqrt[4]{64^2} = \sqrt{4096} = 8$$

$$^{4}\sqrt{81^{3}} = \sqrt{531,441} = 27$$

c)
$$\sqrt[3]{64^2} = \frac{\sqrt[3]{4096}}{\sqrt[4]{64^2}} = \frac{\sqrt[3]{4096}}{\sqrt[4]{64^2}} = \frac{\sqrt[4]{4096}}{\sqrt[4]{64^2}} = \frac{\sqrt[4]{4096}$$

6. Complete the rule:
$$a^{\frac{m}{n}} = \frac{n}{\sqrt{a^m}}$$
 and $\sqrt[n]{a^m} = \underline{a^m}$

and
$$\sqrt[n]{a^m} = \underline{\alpha}^m$$

D Chapter 2

RATIONAL INDICES

$$a^{rac{1}{2}}=\sqrt{a}$$

and

$$a^{rac{1}{3}}=\sqrt[3]{a}$$

 $a^{\frac{1}{n}} = \sqrt[n]{a}$ where $\sqrt[n]{a}$ is called the *n*th root of *a*.

Rational Exponents

For any real number a and integers m and n > 1

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

Example 21

Evaluate:

a
$$16^{\frac{1}{2}}$$

b
$$8^{\frac{1}{3}}$$

$$16^{-\frac{1}{2}}$$

d
$$8^{-\frac{1}{3}}$$

a
$$16^{\frac{1}{2}}$$
 $= \sqrt{16}$
 $= 4$

b
$$8^{\frac{1}{3}}$$
 = $\sqrt[3]{8}$ = 2

$$16^{-\frac{1}{2}}$$

c
$$16^{-\frac{1}{2}}$$
 d $8^{-\frac{1}{3}}$

$$= \frac{1}{16^{\frac{1}{2}}} = \frac{1}{8^{\frac{1}{3}}}$$

$$= \frac{1}{\sqrt{16}} = \frac{1}{\sqrt[3]{8}}$$

$$= \frac{1}{4} = \frac{1}{2}$$

$$=\frac{1}{\sqrt{16}}$$

$$=\frac{1}{\sqrt[3]{8}}$$

Example 22

Write in index form:

a
$$\sqrt{3}$$

b
$$\sqrt[3]{7}$$

$$\frac{1}{\sqrt[4]{7}}$$

$$\begin{array}{ccc} \mathbf{a} & \sqrt{3} \\ & = 3^{\frac{1}{2}} \end{array}$$

b
$$\sqrt[3]{7}$$
 $= 7^{\frac{1}{3}}$

$$\frac{1}{\sqrt[4]{7}}$$

$$= \frac{1}{7^{\frac{1}{4}}}$$

$$= 7^{-\frac{1}{4}}$$

Use your calculator to find $\sqrt[4]{50}$, rounded to 2 decimal places.

50^(1/4) 2.659147948

∜√50 2.659147948

 $64^{\frac{2}{3}}$

$$\left(16x^2\right)^{\frac{1}{2}}$$

 $(1000n^9)^{\frac{1}{3}}$

Additional Examples:

$$64^{\frac{2}{3}}$$

$$(16x^2)^{\frac{1}{2}}$$

$$(16x^2)^{\frac{1}{2}}$$

$$(6 \cdot \chi^{\frac{1}{2}})$$

$$(6 \cdot \chi^{\frac{1}{2}})$$

$$(1000n^9)^{\frac{1}{3}}$$

$$(1000n^{9})^{\frac{1}{3}}$$

$$1000^{\frac{1}{3}} \cdot n^{9 \cdot \frac{1}{3}}$$

$$1000 = 10$$

$$n^{9 \cdot \frac{1}{3}} = n^{3}$$

$$10n^3$$

Additional Examples:

$$(49r^6)^{\frac{3}{2}}$$

$$(64n^9)^{\frac{5}{3}}$$

$$625^{\frac{3}{4}}$$

 $\frac{(49r^{6})^{\frac{3}{2}}}{49^{\frac{3}{2}} \cdot r^{\frac{3}{2}}}$ $\frac{49^{\frac{3}{2}} \cdot r^{\frac{3}{2}}}{49^{\frac{3}{2}} \cdot r^{\frac{9}{2}}}$ $\frac{749^{\frac{3}{2}} \cdot r^{\frac{9}{2}}}{343r^{\frac{9}{2}}}$

 $\frac{(64n^9)^{\frac{5}{3}}}{(64n^9)^{\frac{5}{3}}}$ $64^{\frac{5}{3}} \cdot n^{\frac{5}{3}}$ $64^{\frac{5}{3}} \cdot n^{\frac{5}{3}}$ $1024n^{\frac{5}{3}}$

 $\frac{\frac{3}{4}}{625^4}$ Calculator! $625 \wedge (34)$ OR $\sqrt{625^3}$

Exercises: 2D #1-3 EXERCISE 2D 1 Evaluate without using a calculator: a $4^{\frac{1}{2}}$ b $4^{-\frac{1}{2}}$ c $9^{\frac{1}{2}}$ d $9^{-\frac{1}{2}}$ e $36^{\frac{1}{2}}$ f $36^{-\frac{1}{2}}$ g $27^{\frac{1}{3}}$ h $27^{-\frac{1}{3}}$ i $1000^{\frac{1}{3}}$ j $1000^{-\frac{1}{3}}$ 5 = k $125^{\frac{1}{3}}$ 1 $125^{-\frac{1}{3}}$.

Exercises: 2D #1-3

2 Write in index form:

a
$$\sqrt{11}$$

b
$$\frac{1}{\sqrt{11}}$$

$$\sqrt{12}$$

$$\frac{1}{\sqrt{12}}$$

$$\sqrt[3]{26}$$

$$\frac{1}{\sqrt[3]{26}}$$

9
$$\sqrt[4]{7}$$

h
$$\frac{1}{\sqrt[5]{7}}$$

3 Use your calculator to evaluate the following, rounded to 2 decimal places:

a
$$\sqrt[4]{20}$$

b
$$\sqrt[5]{300}$$

$$\frac{1}{\sqrt[4]{80}}$$

d
$$\frac{1}{\sqrt[6]{15}}$$

Additional Exercises:

1) $216^{\frac{4}{3}}$

2) $10000^{\frac{5}{4}}$

3) $49^{\frac{1}{2}}$

4) $81^{\frac{1}{2}}$

5) $(p^{12})^{\frac{3}{4}}$

6) $(100x^4)^{\frac{3}{2}}$

7) $(b^8)^{\frac{3}{2}}$

8) $(1000n^9)^{\frac{1}{3}}$

Solutions to 2D

EXERCISE 2D

- **b** $\frac{1}{2}$ **c** 3 **d** $\frac{1}{3}$
- **i** 10 **j** $\frac{1}{10}$ **k** 5
- 2 a $11^{\frac{1}{2}}$ b $11^{-\frac{1}{2}}$ c $12^{\frac{1}{2}}$
- $26^{\frac{1}{3}}$ $10^{-\frac{1}{3}}$ 3 a ≈ 2.11 b ≈ 3.13 c ≈ 0.33 d ≈ 0.66

Solutions to Additional Exercises:

4) 9

- 1) 1296
 5) p⁹
- 2) 100000
 6) 1000x⁶
- 3) 7 7) *b*¹²

8) $10n^3$

<u>Directions:</u> Quietly complete survey, turn in.

Your teacher(s) will give you feedback of which class **we** feel you will find the most success.

10 th Grade Course Survey Name		
1) What goals do you have for when you are finished with school? (After college or high school)		
2) (į) Place an X next to the math class you plan to take as a 10 th grader.		
MYP 10 Standard Level MathMYP 10 Extended Level Math		
(ii) List all the Honors AND/OR AP courses you plan to take as a 10 th grader. (For example: AP U.S. History, Honors Chemistry, Honors English, others????)		
3) Additional comments, questions, concerns??		
Teacher Feedback I recommend that you take as a 10 th grader.		

IB Mathematical Studies Standard Level Course

Topic 1

Numbers and algebra

Topic 2

Descriptive statistics

Topic 3

Logic, sets and probability

Topic 4

Statistical application

Topic 5

Geometry and trigonometry

Topic 6

Mathematical models

Topic 7

Introduction to different calculus

Project

An individual piece of work involving the collection of information or the generation of measurements, and subsequent the analysis and evaluation.

At Southwest, we add ACT test preparation

IB Mathematics Standard Level

Topic 1

Algebra

Topic 2

Functions and equations

Topic 3

Circular functions and trigonometry

Topic 4

Vectors

Topic 5

Statistics and probability

Topic 6

Calculus

Mathematical exploration

Internal assessment in mathematics SL is an individual exploration. This is a piece of written work that involves investigating an area of mathematics.

IB Mathematics Higher Level Course

Topic 1 Algebra	Option syllabus content Students must study one of the following	
Topic 2 Functions and equations	options. Topic 7 Statistics and probability	
Topic 3 Circular functions and trigonometry	Topic 8 Sets, relations and groups	
Topic 4 Vectors	Topic 9 Calculus Topic 10	
Topic 5 Statistics and probability	Discrete mathematics Mathematical exploration	
Topic 6 Calculus	A piece of individual written work that involves investigating an area of mathematics.	
	1	