
Welcome Back to MYP Math 9!

	Assignment		t	Comments
	Effort Grade		ade	(What was interesting or
	(Circle One)		ne)	challenging?)
Monday Date: 2/19		Sch 1	100l 2	
Topic:				
Date: 2/20 Topic: Growth an	d De	cay	Rev	iew
Wednesday				
Date:	0	1	2	
Thursday				
Date:	o	1	2	
Friday				
Date: Topic:	0	1	2	

Class Plan:

- 1. Warm-up: Practice modeling data.
- 2. Practice project.

3. Consider topics for project.

Exponential Equation:

a: Starting value

$$y = a \cdot b^x$$

b: Constant multiplier (multiplier is always positive.)

r: Rate of growth/decay, interpreted as a %

Exponential Growth

$$y = a(1+r)^x$$

Ant Population Example:

$$y = 16(1.5)^{x}$$

r = 50% growth

Exponential Decay
0

0<t

$$y = a(1-r)^x$$

Car Value Example:

$$y = 21,700(0.83)^x$$

r = 17% depreciation

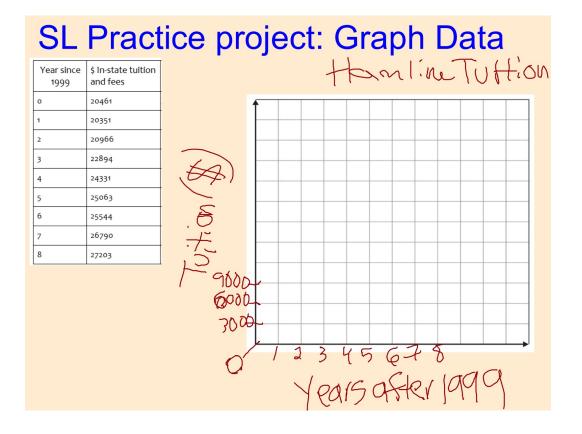
Exponential Equation:

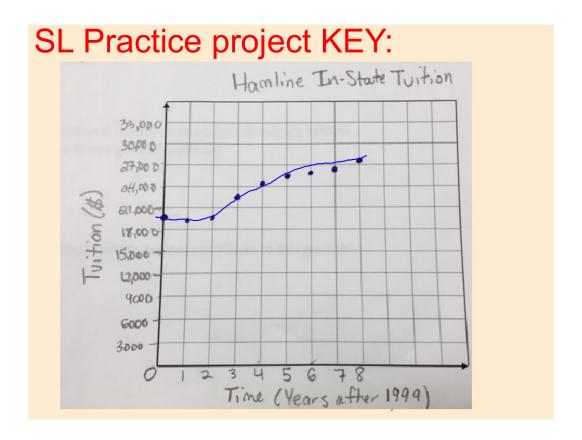
1) Read directions

Directions for the practice project:

- Using the Hamline data, scale and create a graph.
 Build your equation. Use your notes and checklist to assist you.
- 3) Interpret the real-life meanings of your equation.
- 4) Verify your equation.
- 5) Make predictions using your graph and/or equation.
- 6) Write down and answer questions that can be answered from your models. 7) Organize your work as neatly as possible.
- 2) Calculate b, Model data

$$y = a \cdot b^x$$


Year since 1999	\$ In-state tuition and fees	Ratio of current tuition \$ ÷ previous tuition \$
0	20461	
1	20351	
2	20966	
3	22894	
4	24331	
5	25063	
6	25544	
7	26790	
8	27203	


- 3) Verify equation
- 4) Make predictions

SL Practice project: 1) Find constant multipliers. <u>Directions</u>: Find a common ratio by averaging the ratios of the column below. 2) Find Year since \$ In-state tuition average Ratio of current tuition \$ + previous tuition \$ 1999 🛚 and fees 20461 20351 2 200 20966 22894 24331 4 5 25063 6 25544 26790 27203

Average of ratios

SL Prac	tice project KEY:
The data below is	the Hamiline University tuition from 1999 to 2010.
	-state tuition Ratio of current tuition \$ • previous tuition \$
0 1999 204	61
1 2000 203	51 <u>20351</u> ≈ .995
2 2001 209	$\frac{20966}{20351} \approx 1.03$
3 2002 228	$\frac{22894}{20969} \approx 1.09$
4 2003 243	$\frac{2433}{22694} \approx 1.06$
5 2004 250	$\frac{25063}{24331} \approx 1.03$
6 2005 255	$\frac{25544}{25063} \approx 1.02$
7 2006 267	$\frac{26790}{25544} \approx 1.05$
8 2007 272	26790
Average of ration	os (.995 +1.03 +1.09 +1.06+1.03 +1.02 + 1.05
Directions for the	+1027
i) Osing the Halli	Average about = 1.04
	Average about - 1.04

SL	Practice	project:	Build a	and	Interpret	your	equation
----	-----------------	----------	---------	-----	-----------	------	----------

2) Build your equation. Use your notes to assist you. $y = a \cdot b^x = a \left(1 + r\right)^x$ a) The starting tuition of Hamline University is
b) Each year the tuition price is multiplying by a constant rate of
c) Write an equation modeling tuition growth.
3) Interpret the real-life meanings of your equation.
Y:
X:
a:
b:
r:

SL Practice project KEY:

- 2) Build your equation. Use your notes to assist you. $y = a \cdot b^x = a(1+r)^x$
- a) The starting tuition of Hamline University is ______ 20,461
- b) Each year the tuition price is multiplying by a constant rate of ______1.04
- c) Write an equation modeling tuition growth. $y = 20,461(1.04)^x$
- 3) Interpret the real-life meanings of your equation.
- Y: The total (current) cost of Hamline tuition.
- x: Time in years after 1999.
- a: Hamline tuition during 1999
- b: Amount multiplied to each year of tuition
- r: 4% Growth rate of tuition costs

SL Practice project: Verify your equation

4) Verify your equation. Use year 6 (2005) in your equation to show tuition is \$ 25,554

$$y = 20461(1.04)^x$$

4) Verify your equation. Use year 6 (2005) in your equation to show tuition is \$ 25,554

25,554 $\approx 25,889$ $\gamma = 20,461 (1.04)^6$ $\gamma \approx 20,461 (1.04)^6$ $\gamma \approx 20,461 (1.04)^6$ $\gamma \approx 25,889$

\$25,889 is about \$350 over the actual price of tuition during 2005. Because the data isn't growing at the same constant rate (rate was averaged), this small difference shows the equation is a good fit to the data.

SL Practice project: Make Predictions

- 5) Make predictions using your graph and/or equation.
- a) Predict the tuition in year 2021. (The year you graduate high school!)

$$y = 20461(1.04)^{x}$$

2021 is 22 yrs after 1999,
 $y = 20,461(1.04)^{22}$
 $y \approx 20,461(2.37)$
 $y \approx 48,491$

SL Practice project: Further Analysis

Additional Questions to analyze Hamline's tuition:

6) Will this growth continue?

7) What real-life factors contribute to this growth?

SL Practice project: Further Analysis

Additional Questions to analyze Hamline's tuition:

6) Will this growth continue?

It is likely that tuition costs will continue to grow, but the growth may slow down and not be as high as 4% each year. 2018 tuition costs (\$40,284) are \$8000 *less* than what the model predicts for 2021. It is unlikely that tuition will grow by **\$8000** in 3 school years. This evidence shows the growth will likely slow down.

SL Practice project: Further Analysis 7) What real-life factors contribute to this growth?

- Factors that contribute to this growth include growing costs to maintain the schools buildings, technology, and personel.
- There are federal subsidies to higher education that have been reduced, which require the schools to charge more.
- Student Services have also increased as more students are suffering from mental health related issues. This requires additional counselors, therapists, and psychologits.

Undergraduate Tuition Rates

View Tuition Due Dates »

Deposits

Title	Amount
Non-Refundable Deposit (new students only)	\$400

Cost Estimator

The Undergraduate Cost Estimator may help undergraduate students, who have an award package, estimate their cost of attendance at Hamline

2018-2019 Tuition Rates

FULL TIME (12-18 CREDITS PER SEMESTER)

Installment	Amount	
Per year	\$40,284	

Exercises: Write a conclusion for the practice project.

 In conclusion, the Hamline tuition project shows.....

Wext Friday Unit test 3-2

* Exemplars of Quiz posted