Reflect and Turn in!

	Assignment	Comments
	Effort Grade	(What was interesting or
	(Circle One)	challenging?)
Date: Monday 4/09 10A: Types	of data 2	
Tuesday Date: 4/10 Topic: Pre- asses	0 1 2 sment	
Wednesday A/11 Topic: 10B: Discr		n plots
Thursday Date: 4/12 Topic: 10C: Contil	o 1 2 nuous Data, H	l isograms
Date: 4/13 Topic: 10D: Meast	ures of Center	

Warm-up: Two groups of students were asked how many cousins they have.

State the similarities and differences of the two data sets.

1, 4, 5, 5, 6, 7, 8, 9, 9 and 4, 4, 5, 6, 6, 7, 7, 7, 8

Mean=

Median=

Median=

Median=

Mode=

M

Warm-up: Two groups of students were asked how many cousins they have.

State the similarities and differences of the two data sets.

Class Plan 1. Warm-up F MEASURING THE SPREAD OF A DATA SET G BOX-AND-WHISKER PLOTS 3. Practice

F

MEASURING THE SPREAD OF A DATA SET

1) The Range - Difference between the maximum (largest data value) and minimum (smallest data value).

range = maximum - minimum

Pange = Hi - Low Textbook...

THE RANGE

The **range** is the difference between the **maximum** or largest data value, and the **minimum** or smallest data value.

range = maximum data value - minimum data value

MEASURING THE SPREAD OF A DATA SET

2) The Interquartile Range - The range of the middle half (50%) of the data.

$$IQR = Q_3 - Q_1$$

Minimum

<u>Lower Quartile(Q₁)</u> - middle value of the lower half. 25% of data is less than or equal to Q_1 .

Median = middle

Upper Quartile(Q₃) - middle value of the upper half. 25% of data is greater than or equal to Q₃.

Maximum

Textbook...

THE INTERQUARTILE RANGE

We have already seen how the median divides an ordered data set into two halves. These halves are divided in half again by the **quartiles**.

The middle value of the *lower* half is called the **lower quartile** or \mathbf{Q}_1 . One quarter or 25% of the data have values less than or equal to the lower quartile. 75% of the data have values greater than or equal to the lower quartile.

The middle value of the *upper* half is called the **upper quartile** or \mathbf{Q}_3 . One quarter or 25% of the data have values greater than or equal to the upper quartile. 75% of the data have values less than or equal to the upper quartile.

The data set is thus divided into quarters by the lower quartile Q_1 , the median Q_2 , and the upper quartile Q_3 .

The interquartile range is the range of the middle half of the data.

$$\label{eq:continuous} \begin{array}{l} \text{interquartile range} = \text{upper quartile} - \text{lower quartile} \\ \text{or} \quad IQR = Q_3 - Q_1 \end{array}$$

et 7, 3, 4, 2, 5, 6, 7, 5, 5, 9, 3, 8, 3, 5, 6, find the:

| b | lower and upper quartiles | c | interesting |

 $Q_{3,3}B_{5,5,5}5_{5,6,6}F_{1,8,9}$ Min=2 $Q_{7}=3$ Med=5 $Q_{3}=7$ MaxSH Summare Example 12 Self Tutor

For the data set 7, 3, 4, 2, 5, 6, 7, 5, 5, 9, 3, 8, 3, 5, 6, find the:

a median

b lower and upper quartiles

• interquartile range.

The ordered data set is: 2 3 3 3 4 5 5 5 5 6 6 7 7 8 9 {15 data values}

a Since n = 15, $\frac{n+1}{2} = 8$... the median is the 8th score, which is 5.

b As the median is a data value, we now ignore it and split the remaining data into two halves:

lower upper $Q_1 = \text{median of lower half} = 3$ $Q_3 = \text{median of upper half} = 7$ $Q_3 = \text{median of upper half} = 7$

 $IQR = Q_3 - Q_1 = 7 - 3 = 4$

For the data set 6, 10, 7, 8, 13, 7, 10, 8, 1, 7, 5, 4, 9, 4, 2, 5, 9, 6, 3, 2, find the: a median b lower and upper quartiles c interquartile range.

Example 13

◄ Self Tutor

For the data set 6, 10, 7, 8, 13, 7, 10, 8, 1, 7, 5, 4, 9, 4, 2, 5, 9, 6, 3, 2, find the:

- a median
- b lower and upper quartiles
- interquartile range.

The ordered data set is:

$$1 \ \ 2 \ \ 2 \ \ 3 \ \ 4 \ \ 4 \ \ 5 \ \ 5 \ \ 6 \ \ 6 \ \ 7 \ \ 7 \ \ 8 \ \ 8 \ \ 9 \ \ 9 \ \ 10 \ \ 10 \ \ 13 \qquad \{20 \ data \ values\}$$

a Since
$$n = 20$$
, $\frac{n+1}{2} = \frac{21}{2} = 10.5$

$$\therefore \ \ \text{the median} = \frac{10 \text{th value} \ + \ 11 \text{th value}}{2} = \frac{6+7}{2} = 6.5$$

b As the median is not a data value, we split the data into two halves:

$$Q_1 = median of lower half = 4$$

 $Q_3 = median of upper half = 8.5$

Some computer packages (for example, MS Excel) calculate quartiles in a different way from this example.

BOX-AND-WHISKER PLOTS

A box-and-whisker plot is a visual display of some of the descriptive statistics of a data set. It shows:

- the minimum value (min)
- the lower quartile (Q_1)
- the median (Q_2)
- the upper quartile (Q_3)
- the maximum value (max)

These five numbers form the

five-number summary of a data set.

For Example 13, the five-number summary and corresponding box-and-whisker plot are:

 ${\rm minimum}=1$

 $Q_1 = 4$ median = 6.5

 $Q_3 = 8.5$

 ${\rm maximum}=13$

 Q_1 min

median

 Q_3 max

Notice that:

- · the rectangular box represents the 'middle' half of the data set
- \bullet the lower whisker represents the 25% of the data with smallest values
- ullet the upper whisker represents the 25% of the data with greatest values.

Example 13: Box and Whisker Plot

Box and Whisker Plot

 ${\rm minimum}=1$

 $Q_1 = 4$ $\mathrm{median} = 6.5$

 $Q_3 = 8.5$

naximum = 13

otice that:

• the rectangular box represents the 'middle' half of the data set

 Q_1

min

ullet the lower whisker represents the 25% of the data with smallest values

6

median

9

 Q_3

11

max

• the upper whisker represents the 25% of the data with greatest values.

Example 14

Consider the data set: 5 6 7 6 2 8 9 8 4 6 7 4 5 4 3 6 6

- a Construct the five-number summary for the data.
- **b** Draw a box-and-whisker plot to display the data.
- c Find the: i range ii interquartile range of the data.

a The ordered data set is:

So, the 5-number summary is: $\begin{cases} \min = 2 & Q_1 = 4 \\ \text{median} = 6 & Q_3 = 7 \\ \text{max} = 9 \end{cases}$

Ь

0 1 2 3 4 5 6 7 8 9 10

c i range = max - min = 9 - 2 = 7 ii $IQR = Q_3 - Q_1 = 7 - 4 = 3$

Exercises...

2 Kimmi runs a weekly painting class. The numbers of people attending the class over the last 10 weeks have been:

4 The following amounts of money were withdrawn from an ATM on a particular day:

\$100 \$60 \$120 \$90 \$130 \$150 \$200 \$120 \$180 \$70 \$140 \$100 \$50 \$200 \$120 \$80 \$100 \$150

Find the:

a median

b lower quartile

c upper quartile

d interquartile range of the data.

F

MEASURING THE SPREAD OF A DATA SET

Exercises...

2 A box-and-whisker plot has been drawn to show the distribution of marks for a class in a test out of 100.

- a Find the:
 - i highest mark
- lowest mark.
- **b** What was the median test score for the class?
- What was the range of marks scored for the test?
- **d** What percentage of students scored 60 or more for the test?
- What was the interquartile range for the test?
- If you scored 70 for the test, would you be in the top 50% of students in the class?

G

BOX-AND-WHISKER PLOTS

Exercises...

- **3** Consider the data set: 7 13 16 9 12 17 13 10 11
 - a Construct the five-number summary for the data.
 - **b** Draw a box-and-whisker plot to display the data.
 - c Find the: i range ii interquartile range of the data.

G

BOX-AND-WHISKER PLOTS

Solutions

- MEASURING THE SPREAD OF A DATA SET
- 2 12 people
- **4 a** \$120 **b** $Q_1 = \$90$ **c** $Q_3 = \$150$ **d** IQR = \$60
- 6 a 6 cm b 10.1 cm c 8.2 cm d 7.3 cm
 - **e** 8.95 cm **f** 4.1 cm **g** 1.65 cm

Solutions

BOX-AND-WHISKER PLOTS

- a i 98 marks ii 30 marks b 73 marks

- c 68 marks
- d 75% 22 marks
- 3 a min = 7, $Q_1 = 9.5$, med = 12, $Q_3 = 14.5$, max = 17

c i 10 **ii** 5