Density Practice Problems Worksheet \#2 Answer Key

1. You have a rock with a volume of $15 \mathrm{~cm}^{3}$ and a mass of 45 g . What is its density?

Density $=m / v$
Density $=45 \mathrm{~g} / 15 \mathrm{~cm}^{3}$
Density $=3.0 \mathrm{~g} / \mathrm{cm}^{3}$
2. You have a different rock with a volume of $30 \mathrm{~cm}^{3}$ and a mass of 60 g . What is its density?

Density $=m / v$
Density $=60 \mathrm{~g} / 30 \mathrm{~cm}^{3}$
Density $=2.0 \mathrm{~g} / \mathrm{cm}^{3}$
3. In the above two examples which rock is more dense? Why?

Rock sample \#1, because it has a density of $3.0 \mathrm{~g} / \mathrm{cm}^{3}$, which is greater than rock sample \#2's density of $2.0 \mathrm{~g} / \mathrm{cm}^{3}$
4. Calculate the mass of a liquid with a density of $3.2 \mathrm{~g} / \mathrm{mL}$ and a volume of 25 mL .

Mass $=D \times V$
Mass $=3.2 \mathrm{~g} / \mathrm{ml} \times 25 \mathrm{ml}$
Mass $=80.0 \mathrm{~g}$
5. Calculate the density of a 500 g rectangular block with the following dimensions: length $=8 \mathrm{~cm}$, width $=6 \mathrm{~cm}$, height $=5 \mathrm{~cm}$.

Density $=m / v$
Density $=500 \mathrm{~g} / 240 \mathrm{~cm}^{3}(8 \mathrm{~cm} \times 6 \mathrm{~cm} \times 5 \mathrm{~cm})$
Density $=2.083$, rounded to nearest tenth $=2.1 \mathrm{~g} / \mathrm{cm}^{3}$
6. Calculate the mass of a solid metal block with a density of $2.6 \mathrm{~g} / \mathrm{cm}^{3}$, a width of 1.8 cm , a length of 4 cm , and a height of 2.3 cm .

Mass $=D \times V$
Mass $=2.6 \mathrm{~g} / \mathrm{cm}^{3} \times(1.8 \mathrm{~cm} \times 4 \mathrm{~cm} \times 2.3 \mathrm{~cm})$
Mass $=2.6 \mathrm{~g} / \mathrm{cm}^{3} \times 16.56 \mathrm{~cm}^{3}$
Mass $=43.056 \mathrm{~g}$ - rounded to nearest tenth $=43.1 \mathrm{~g}$
7. An irregular object with a mass of 180 g displaces 2.5 L of water when placed in a large overflow container. Calculate the density of the object.

Density $=\mathrm{m} / \mathrm{v}$
Density $=180 \mathrm{~g} / 2.5 \mathrm{~L}($ One Liter $=1000 \mathrm{ml}$, thus 2.5 Liters $=2500 \mathrm{ml})$
Density $=180 \mathrm{~g} / 2500 \mathrm{ml}$
Density $=0.072 \mathrm{~g} / \mathrm{ml}$
8. A graduated cylinder has a mass of 80 g when empty. When 20 mL of water is added, the graduated cylinder has a mass of 100 g . If a stone is added to the graduated cylinder, the water level rises to 45 mL and the total mass is now 156 g . What is the density of the stone?

Density $=m / v$
Mass of stone $=156 \mathrm{~g}-100 \mathrm{~g}$ (mass of graduated cylinder and water) $=56 \mathrm{~g}$
Volume of stone $=45 \mathrm{ml}-20 \mathrm{ml}=25 \mathrm{ml}$ (displaced)
Density $=56 \mathrm{~g} / 25 \mathrm{ml}$
Density of stone $=2.24$, rounded to nearest tenth $=2.2 \mathrm{~g} / \mathrm{ml}$
9. What is the density of a board whose dimensions are $5.54 \mathrm{~cm} \times 10.6 \mathrm{~cm} \times 199$ cm and whose mass is $28,600 \mathrm{~g}$?

Density $=m / v$
Volume of board $=5.54 \mathrm{~cm} \times 10.6 \mathrm{~cm} \times 199 \mathrm{~cm}=11,686.076 \mathrm{~cm}^{3}$
Density $=28,600 \mathrm{~g} / 11,686.076 \mathrm{~cm}^{3}$
Density $=2.447357 \mathrm{~g} / \mathrm{cm}^{3}$, rounded to nearest tenth $=2.4 \mathrm{~g} / \mathrm{cm}^{3}$
10. What is the volume of a tank that can hold $18,754 \mathrm{~g}$ of methanol whose density is $0.788 \mathrm{~g} / \mathrm{cm}^{3}$?
$V=m / D$
$V=18,754 \mathrm{~g} / 0.788 \mathrm{~g} / \mathrm{cm}^{3}$
$V=23,799.492 \mathrm{~cm}^{3}$, rounded to nearest tenth $=23,799.5 \mathrm{~cm}^{3}$

